

MEMORIAL DESCRITIVO

ILUMINAÇÃO ESTÁDIO MUNICIPAL IRMÃO GINO MARIA ROSSI

FEVEREIRO DE 2021

Referências Cadastrais

Cliente Prefeitura Municipal de Pouso Alegre

Localização Rua Eduardo Souza Gouvêa, 981, Pouso Alegre, Minas Gerais

Título Estádio Municipal Irmão Gino Maria Rossi

Contato RINALDO

E-mail rinaldololiveira@gmail.com

Líder do Projeto: Denis de Souza Silva

Coordenador: Aloísio Caetano Ferreira

Projeto/centro de custo: ATA194- 2020

Data do documento: 22/02/2021

Elaborador/Autor	Giovanni Augusto Petrucci	Engenheiro Eletricista
Verificador/aprovador	Aloisio Caetano Ferreira	Coordenador do projeto

Isenção de Responsabilidade:

Este documento é confidencial, destinando-se ao uso exclusivo do cliente, não podendo ser reproduzido por qualquer meio (impresso, eletrônico e afins) ainda que em parte, sem a prévia autorização escrita do cliente.

Este documento foi preparado pela Dac Engenharia com observância das normas técnicas de Pouso Alegre e em estrita obediência aos termos do pedido e contrato firmado com o cliente. Em razão disto, a Dac Engenharia isenta-se de qualquer responsabilidade civil e criminal perante o cliente ou terceiros pela utilização deste documento, ainda que parcialmente, fora do escopo para o qual foi preparado.

Equipe Técnica

Responsável Técnico – Projeto Elétrico

Giovanni Augusto Petrucci	
Engenheiro Eletricista	
Nº CREA: MG 255.737	Nº ART: MG20210098219

Coordenação

Aloisio Caetano Ferreira	
Nº CREA: MG 97.132/D	Engenheiro Hídrico

Elaboração

Assistente Administrativa
Auxiliar de Topografia
Design de Interiores
Engenheira Ambiental
Engenheiro Ambiental
Engenheiro Civil
Engenheira Civil
Engenheira Civil
Engenheiro Civil
Engenheiro Civil
Engenheira Civil
Engenheira Civil

Thais Coimbra	Engenheira Civil
William Baradel	Engenheiro Civil
Giovanni Petrucci	Engenheiro Eletricista
Denis Silva	Engenheiro Hídrico
Igor Lopes	Engenheiro Hídrico
Guilherme Lacerda Lima	Engenheiro de Materiais
Geraldo Tiago Filho	Engenheiro Mecânico
German Lozano	Engenheiro Mecânico
Giulia Camerini	Estag. Biologia
Andressa Uchôas	Estag. Engenharia Civil
Bianca Baruk Rosa	Estag. Engenharia Civil
Bianca Batista	Estag. Engenharia Civil
Erica de Souza	Estag. Engenharia Civil
Gabriel Santos	Estag. Engenharia Civil
Isabela Silva	Estag. Engenharia Civil
Marcela Cabral	Estag. Engenharia Civil
Pedro Henrique Justiniano	Estag. Engenharia Civil
Thallis Eduardo Cabral	Estag. Engenharia Civil
Tulio Lemos	Estag. Engenharia Civil
Henrique Biasi	Estag. Engenharia Hídrica
Nathália Souza	Estag. Engenharia Hídrica
Júlio Del Ducca	Estag. Engenharia Mecânica
Pedro Costa	Estag. Engenharia Mecânica

<u>Índice</u>

OBJETIV	/0	6
1.	NORMAS RELACIONADAS AO PROJETO	7
2.	DESCRIÇÕES	8
2.1.	– QGBT e ENCAMINHAMENTO DE CABO	8
2.2.	-ILUMINAÇÃO DO ESTÁDIO DE FUTEBOL	8
2.3.	– QUADRO DE DISTRIBUIÇÃO GERAL TORRE	8
2.4.	– CÁLCULO DE QUEDA DE TENSÃO E DIMENSIONAMENTO DOS CONDUTORES	9
2.5.	– CONDIÇÕES GERAIS	9
3.	SERVIÇOS COMPLEMENTARES	10
3.1.	LIMPEZA DE ÁREAS	10
3.2.	TRATAMENTO DA ESTRUTURA DAS TORRES	10
3.3.	TROCAS DE PORTÕES	10
4.	CONSIDERAÇÕES FINAIS	11

OBJETIVO

O objetivo deste memorial descritivo é apresentar as especificações de materiais, critérios de cálculo, o projeto elétrico e os principais resultados de análise e dimensionamento dos cabos e disjuntores da iluminação do estádio de Pouso Alegre.

1. NORMAS RELACIONADAS AO PROJETO

Os principais critérios adotados neste projeto, referente aos materiais utilizados e dimensionamento das peças, seguem conforme as prescrições normativas.

Normas:

- NBR 5410:2004 Instalações elétricas de baixa tensão
- NBR 14136:2012 Plugues e tomadas para uso doméstico e análogo até 20 A/ 250 V em corrente alternada

2. DESCRIÇÕES

2.1. - QGBT e ENCAMINHAMENTO DE CABO

Os quadros de distribuição (QGBT) serão reaproveitados, hoje existe uma caixa de metal com as medidas 122x53x160cm. Nessas caixas ficarão instalados os disjuntores gerais dois 40A e um de 50A para acionamento das iluminações, o encaminhamento de cabo será reaproveitado.

Apenas os cabos dos refletores nas arquibancadas que serão novos, dutos, eletrocalha e o disjuntor que se encontra na caixa de distribuição permanecerá.

2.2. -ILUMINAÇÃO DO ESTÁDIO DE FUTEBOL

Será instalado um total de 30 módulos, sendo 10 módulos para cada torre e 10 módulos para arquibancada, onde dois módulos são circuito reserva, cada módulo tem 6 refletores.

São duas torres de iluminação, com estrutura metálica de 25m e cobertura da área vip, onde serão instalados refletores de LED de 600W, com temperatura de luz branca de 6000K, 1400 de Lux e um fluxo luminoso total de 11.550.000lm.

Os circuitos alimentadores das torres de iluminação e dos quadros de distribuição foram dimensionados para que a queda de tensão não ultrapasse a 7%, conforme NBR 5410.

Cada torre de iluminação contará com 8 módulos de refletores, instalados na seguinte disposição:

Para cada torre:

- Cruzeta superior, contará com 10 módulos de refletores;
- Cruzeta inferior, contará com 10 módulos de refletores.

Arquibancada:

10 módulos apoiados na estrutura metálica da arquibancada.

2.3. – QUADRO DE DISTRIBUIÇÃO GERAL TORRE

Será previsto duas caixas de distribuição novas, que serão colocadas dentro de duas salas localizada próximo as torres, o quadro de iluminação da cobertura será mantido e trocado

apenas o disjuntor. Em cada caixa será instalado 1 disjuntor DIN 40A, 10 disjuntores de 10A, para proteção dos refletores.

2.4. – CÁLCULO DE QUEDA DE TENSÃO E DIMENSIONAMENTO DOS CONDUTORES

De acordo com os cálculos de queda de tensão aplicados no projeto, a bitola dos cabos para interligar o QGBT aos quadros secundários instalados nas torres de iluminação deverão ser de no mínimo 16mm. Os cabos dos quadros secundários até os refletores deverão ser de no mínimo 1,5mm.

2.5. - CONDIÇÕES GERAIS

Qualquer detalhe omisso e/ou falta de material neste projeto, o projetista deverá ser comunicado para que se possa fazer as devidas alterações, quando se tratar de execução deve seguir as normas da ABNT, NBR 5410 e Regulamento de Instalações de Unidades Consumidoras de Baixa Tensão (RIC),

3. SERVIÇOS COMPLEMENTARES

3.1. LIMPEZA DE ÁREAS

As áreas abaixo das torres deverão ser revitalizadas para evitar a deterioração das peças metálicas e melhorar o acesso. Toda vegetação deverá ser substituída por lastro de brita.

3.2. TRATAMENTO DA ESTRUTURA DAS TORRES

As estruturas metálicas correspondentes as torres de iluminação deverão ser tradadas para garantir sua capacidade de carga e evitar futuras manutenções. A estrutura metálica deverá ser lixada para aplicação de anticorrosivo. Posteriormente deverá ser pintada com tinta do tipo epóxi de boa qualidade.

Em hipótese alguma deverá ser utilizada a torre metálica como escada para a montagem das luminárias, já que está previsto a utilização de caminhão guindauto para a montagem com maior segurança para o profissional.

3.3. TROCAS DE PORTÕES

Deverão ser substituídos os portões de acesso as cabines da subestação, assim como os portões de acesso as torres metálicas.

4. CONSIDERAÇÕES FINAIS

O projetista não se responsabilizará por eventuais alterações deste projeto durante sua execução.

As potências dos equipamentos dados no projeto, não devem ser, em hipótese alguma, extrapolados sem prévia consulta e autorização do projetista.

Recomendamos que sejam utilizados produtos de qualidade e confiabilidade comprovadas. A qualidade da instalação depende diretamente do material utilizado.

Este projeto foi baseado nas diretrizes normativas, layout e informações fornecidas pelo arquiteto ou proprietário. Na dúvida da locação exata dos pontos, estes deverão ser consultados.